If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x-113=0
a = 3; b = 4; c = -113;
Δ = b2-4ac
Δ = 42-4·3·(-113)
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-14\sqrt{7}}{2*3}=\frac{-4-14\sqrt{7}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+14\sqrt{7}}{2*3}=\frac{-4+14\sqrt{7}}{6} $
| 4y+3y+2y=9y | | 5x-2+x=40 | | 9(2n+1)=7(9n+4)+9 | | 37x+45=5(6x+8)+7x+4 | | 3(x-1)/5=3(x+7)/13 | | x-5=3/2x-9/4 | | 4.6x-18.62=7.6 | | 2(5-X)=8(x+5) | | 6x+7=-7+3x+20 | | 3x+4+5x=15x+4 | | n/8–123=37 | | 3x+4+5x=8x+4 | | 5(x-7)=-3(x+1) | | 2s^2-50=0 | | 3(2x+1)=3(x+13) | | 7(3r-1)+(r+5)=-52 | | X=4/3y-2 | | 9(x+3)+4(x+3)=7x-7 | | 4(5+x)=3(2x+2) | | 1c+2=10-3c | | 5(x=2)=5(3x+2) | | (0.0625-2x)^2=0 | | 9=x/0.5 | | 4y=108 | | x+(2/3x)+90=180 | | -8(x+11)+841=30+19 | | 0.01x2-0.1x-0.3=0 | | 8(0.5+0.375y)-3y=-0.4 | | v3/4=1/8 | | x2+(4/5)x=-1/4 | | 1.5x^2-5x-15.5=0 | | 2/3x-8=28 |